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Abstract

Background: The priniciple objective here is to analyze cardiovascular dynamics in
diabetic subjects by actions related to heart rate variability (HRV). The correlation of
chaotic globals is vital to evaluate the probability of dynamical diseases. Methods: Forty-
six adults were split equally. The autonomic evaluation consisted of recording HRV for
30 minutes in supine position without any additional stimuli. “Chaotic globals” are then
able to statistically determine which series of interbeat intervals are diabetic and which
are not. Two of these chaotic globals, spectral Entropy and spectral Detrended
fluctuation analysis were derived from six alternative power spectra: Welch, Multi-Taper
Method, Covariance, Burg, Yule-Walker and the Periodogram. We then compared results
to observe which power spectra provided the greatest significance by three statistical
tests: One-way analysis of variance (ANOVAL); Kruskal-Wallis technique and the
multivariate technique, principal component analysis (PCA). Results: The Chaotic
Forward Parameter One (CFP1) applying all three parameters is proven the most robust
algorithm with Welch and MTM spectra enforced. This was proven following two tests for
normality where ANOVAL1 (p=0.09) and Kruskal-Wallis (p=0.03). Multivariate analysis
revealed that two principal components represented 99.8% of total variance, a steep
scree plot, with CFP1 the most influential parameter. Conclusion: Diabetes reduced the
chaotic response.
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Background and Aims

The beat of cardiac interbeat intervals has
been revealed to oscillate in a complex and
possibly chaotic manner [1]. It is the aim to
optimally assess the pathological risk that levels
of diabetes mellitus pose to the individual by
analyzing the heart rate variability (HRV). To

accomplish this we applied the Shannon Entropy
[2] and Detrended fluctuation analysis (DFA) [3]
algorithms to six different power spectra to
determine which exhibited the most parametric
sensitivity. Originally, Garner and Ling [4]
undertook this to compute the spectral Entropy
[5] and spectral Detrended fluctuation analysis
(sDFA) [4]. Yet, power spectra that we applied
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here to derive these two parameters are: Welch
[6], Multi-Taper Method (MTM) [7,8],
Covariance [9], Burg [9], Yule-Walker [10] and
the Periodogram [11,12].

The advantage for producing the correlation
with HRV is that it can provide a benchmark of
the risk of the so-called “dynamical diseases
[13]” in diabetic subjects. A potential reduction
would be consistent with changes in the
autonomic nervous system (ANS) and a
dysfunctional vagus. The vagus has a vital role
in regulating the rhythm of physiological
systems. Sympathetic and parasympathetic
nervous systems interactions have been
documented as influencing HRV.

HRV is a basic tool widely used to monitor
the ANS. Alternative techniques include
Photoplethysmography [14], Phonocardiography
[15] and Vibrocardiography [16]. Some are
unresponsive as with  Sympathetic  Skin
Response [17] or too intricate and costly as with
Quantiative Pupillography [18].

‘Chaotic global” techniques are more
responsive to erraticism in dynamical systems
than those based on time-domain, geometric
methods, frequency domain and/or nonlinear
measurements [19]. Chaotic behaviour in
biological systems usually indicates normal
physiological status; while a reduction of chaotic
tendancies could be a pathophysiological marker
[20].

By implementing six alternative power
spectra we aim to accomplish a result of greater
significance by parametric and non-parametric
statistics when equating normals with diabetics.
It would then be conceivable to reach a diagnosis
and provide the necessary treatment earlier.

Material and Methods

Patient Selection and Assessment was
identical to the study by Souza et al. [21]. In
brief, the study consisted of forty-six adults split
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equally. A cohort with diabetes mellitus (type 1);
male (44%) and a control group of healthy
subjects; male (65%).

The subjects were selected for the absence
of cardiac and respiratory diseases, non-
administration of medication(s) and were non-
smokers and non-alcoholics. Those subjects who
satisfied the inclusion criteria progressed to an
explanation of the objectives and procedures of
the study and signed a confidential informed
consent form. All of the procedures in this study
were agreed by the Research Ethics Committee
of the institution (Protocol No 47/2011). The
experimental  protocol consisted of the
identification and autonomic  evaluation.
Throughout the identification, details were
logged of the subjects past medical history to
determine whether they satisfied the inclusion
criteria and to characterize the population. The
physical evaluation was undertaken by
quantification of HRV. Appraisals were
conducted in a noiseless laboratory with the
temperature at about 23° C and humidity around
54%. All assessments were performed between
13:00hr and 17:00hr to circumvent circadian
cycle influences.

Data with regards to age, gender, signs and
symptoms resulting from diabetes, the use of
medications, smoking and alcoholic intake and
the extent of physical activity judged by
international physical activity questionnaires
[22], were collected from the subjects.

The HRV evaluations were undertaken to
verify the autonomic modulation. The subjects
were instructed to avoid alcoholic and/or ANS
stimulants for 24 hours prior to data recording.
Throughout the autonomic evaluation, the
subjects were told to remain alert, silent, with
spontaneous breathing at rest, in the supine
position for 30 minutes on a sofa. After
receiving an explanation of the data collection
procedures, an electrode was located on the
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subjects’ torso, and the heart rate receiver (Polar
Electro, model S810i, Finland) was placed
around the patients’ wrist. The equipment had
been validated for collecting HRV data for
analysis [23]. To analyze HRV indexes,
precisely 1000 intervals of successive cardiac
beats were recorded. They were chosen after
digital filtering and perfected by manual filtering
to eliminate artifact and ectopic beats. Only the
series exceeding 95% of sinus beats were
included.

In the past, we have applied the Welch and
MTM power spectra. It was assumed that since
the MTM is an adaptive and nonlinear technique
with less spectral leakage it would potentially be
more sensitive to a chaotic response. In Souza et
al [21] we applied the Welch power spectrum to
subjects with diabetes. These then gave us the
standard spectral Entropy and spectral Detrended
fluctuation analysis (SDFA). Further studies on
malnutrition [24], youth obesity [25] and a study
on attention deficit hyperactivity disorder
(ADHD) [26] applied the MTM power spectra
throughout. These were referred to as high
spectral Entropy and high spectral Detrended
fluctuation analysis (hsDFA). During all studies
we applied the MTM power spectrum to
generate the third parameter spectral Multi-
Taper Method (sSMTM) [4]. This quantifies the
extent of Dbroadband noise in the system
associated with increasing chaotic response. This
parameter remains unchanged throughout all the
subsequent analysis.

When we compute power spectra via
Welch's method the parameters are set at: (i)
sampling frequency of 2Hz, (ii) zero overlap,
(ili)) a Hamming window and the number of
discrete Fourier transform (DFT) point to use in
the power spectral density (PSD) estimate is the
greater of 256 or the next power of two greater
than the length of the segments, and (iv) there is
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no detrending. These were calculated in the
study by Souza et al [21].

To compute the MTM, the parameters are
set as the following: (i) sampling frequency of
1Hz; (ii) time bandwidth for the discrete prolate
spheroidal sequences (DPSS) often referred to as
slepian sequences [27] is 3; (iii) a discrete
Fourier transform (DFT) length of 256; (iv)
Thomson's adaptive nonlinear combination
method to combine individual spectral estimates
is applied. These were applied in studies on
youth obesity [25], malnutrition [24] and ADHD

[26].

The Periodogram power spectral density
estimate is a nonparametric estimate of a wide-
sense stationary random process using a
rectangular window. The number of points in the
discrete Fourier transform (DFT) is a maximum
of 256 or the next power of two greater than the
signal length.

For Covariance, Burg and Yule-Walker
methods the order is of the autoregressive model
(AR) used to produce the power spectra density
estimate and is set to 4. A default discrete
Fourier transform (DFT) length of 256 is
applied.

In this study, when computing spectral
Entropy and sDFA we enforce six different
power spectra (Welch, MTM, Covariance, Burg,
Yule-Walker and Periodogram) to give six
variants of these parameters. There are seven
different permutations of three chaotic global
parameters. All three chaotic global values have
equal weighting of unity. The Chaotic Forward
Parameter (CFP) enables different combinations
of ‘chaotic globals’ to be applied to ensure
optimum chaotic response - tested later by
multivariate analysis. It is expected that the CFP
which applies all three should be the most
significant and robust since it takes the
information and processes it in three different
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ways. It is assumed that the CFP1 which is nonlinear and intrinsically promotes reduced
applied to the MTM power spectrum should be  spectral leakage.
the best overall statistically. It is adaptive,
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Figure 1. The boxplots of the seven combinations of chaotic forward parameters (CFP 1 to 7) for the six power spectra
density (PSD) estimates (Welch, MTM, Burg, Covariance, Yule-Walker and Periodogram) of 1000 RR intervals in normal
subjects (CFPx N) and diabetic subjects (CFPx D). The point closest to the zero is the minimum and the point farthest
away is the maximum. The point next closest to the zero is the 5 percentile and the point next farthest away is the 95"
percentile. The boundary of the box closest to zero indicates the 25" percentile, a line within the box marks the median
(not the mean), and the boundary of the box farthest from zero indicates the 75" percentile. The difference between these
points is the inter-quartile range (IQR). Whiskers (or error bars) above and below the box indicate the 90" and 10"
percentiles respectively.
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Statistical Analyses

Parametric statistics accept that the data are
normally distributed, hence the use of the mean
as a measure of central tendancy. If we cannot
normalize the data we should not compare
means. To verify normality we applied the
Anderson-Darling [28] and Lilliefors [29] tests.
The Anderson-Darling test for normality applies
an empirical cumulative distribution function.
The Lilliefors test is useful in studies such as

these with small sample sizes. Here, the results
were inconclusive so we cannot assert that the
observations follow either a normal or non-
normal distribution. Therefore we applied both
parametric and  nonparametric  tests  of
significance. These are the one-way analysis of
variance (ANOVA1) [30] and the Kruskal-
Wallis [31] tests of significance, respectively.
We illustrate the results as boxplots, in Figure 1
and statistically in the Table 1.

Table 1. Table of results for the mean and standard deviation of the chaotic responses CFP 1 to 7 derived by six different
power spectra (Welch, MTM, Burg, Covariance, Yule-Walker & Periodogram) for those normal subjects (n=23) and
those with diabetes mellitus (n=23). We also compute the significance (p-value) by parametric and nonparametric
techniques: One way Analysis of Variance (ANOVAL) and Kruskal-Wallis tests of significance respectively. We mark

those with significances p<0.05 with (*) and those with p<0.01 with (**).

Power Spectra Applied | Chaotic Forward Mean + SD Normal | Mean + SD Diabetic | ANOVAL | Kruskal-
Parameter (n=23) (n=23) (p-value) | Wallis
(p-value)
CFP1 0.9212 +0.1197 0.8590 + 0.1202 0.0859 0.0288"
CFP2 0.6332 + 0.1365 0.5869 + 0.0999 0.1962 0.1040
Welch Power Spectrum | CFP3 0.8465 + 0.1074 0.7464 +0.1043 0.0025~ | 0.0002™
CFP4 0.7279 + 0.2251 0.7378 + 0.1985 0.8746 0.8347
CFP5 0.3255 +0.1734 0.4041 + 0.1481 0.1057 0.0994
CFP6 0.6440 + 0.1735 0.6133 + 0.1504 0.5243 0.6445
CFP7 0.4760 + 0.2451 0.3642 + 0.1969 0.0954 0.1040
CFP1 0.9217 +0.1194 0.8603 + 0.1202 0.0893 0.0273"
Multi-Taper Method CFP2 0.6340 + 0.1362 0.5889 + 0.0995 0.2066 0.1471
(MTM) CFP3 0.8467 +0.1072 0.7463 + 0.1043 0.0024” | 0.0002™
Power Spectrum CFP4 0.7283 + 0.2248 0.7394 + 0.1985 0.8597 0.8347
CFP5 0.3268 + 0.1725 0.4071 + 0.1480 0.0973 0.1040
CFP6 0.6440 + 0.1735 0.6133 + 0.1504 0.5243 0.6445
CFP7 0.4765 + 0.2248 0.3641 + 0.1967 0.0931 0.1040
CFP1 1.0317 + 0.2653 1.1112 +0.2155 0.2706 0.4100
CFP2 0.7823 + 0.2821 0.9112 +0.2311 0.0971 0.0119
Burg Power Spectrum CFP3 0.7096 + 0.1976 0.6373 + 0.1999 0.2234 0.1381
CFP4 0.9893 + 0.2407 1.0946 + 0.1895 0.1064 0.1064
CFP5 0.7326 + 0.2374 0.8915 + 0.2044 0.0191" 0.0002™
CFP6 0.6440 + 0.1735 0.6133 + 0.1504 0.5243 0.6445
CFP7 0.1901 + 0.2532 0.0801 + 0.2049 0.1126 0.0023"
CFP1 1.0530 + 0.2349 1.1490 + 0.2052 0.1472 0.1017
CFP2 0.8078 + 0.2619 0.9555 + 0.2282 0.0475" | 0.0001"
Covariance Power CFP3 0.6888 + 0.1986 0.6392 + 0.1986 0.4021 0.3283
Spectrum CFP4 1.0249 + 0.2109 1.1316 + 0.1811 0.0725 0.0243"
CFP5 0.7755 + 0. 2242 0.9349 + 0.2048 0.0156° | <0.0001™
CFP6 0.6440 + 0.1735 0.6133 + 0.1504 0.5243 0.6445
CFP7 0.1402 + 0.2263 0.0850 + 0.2080 0.3937 0.1410
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Table 1. Continued.

Power Spectra Applied | Chaotic Forward Mean + SD Normal | Mean + SD Diabetic | ANOVAL | Kruskal-
Parameter (n=23) (n=23) (p-value) | Wallis
(p-value)
CFP1 0.9307 + 0.2448 0.8432 + 0.2491 0.2360 0.1912
CFP2 0.6453 + 0.2581 0.5624 + 0.2427 0.2681 0.1838
Yule-Walker Power CFP3 0.7570 £ 0.1791 0.6917 £ 0.1737 0.2161 0.1912
Spectrum CFP4 0.8430 + 0.2347 0.7794 + 0.2362 0.3643 0.4100
CFP5 0.5257 £ 0.2135 0.4632 + 0.2252 0.3397 0.2533
CFP6 0.6440 +0.1735 0.6133 + 0.1504 0.5243 0.6445
CFP7 0.3113 £ 0.2572 0.2654 + 0.2022 0.5047 0.6445
CFP1 0.9298 + 0.1205 0.8595 + 0.1246 0.0581 0.0161
CFP2 0.6458 + 0.1368 0.5878 +0.1042 0.1127 0.0265"
Periodogram Power CFP3 0.8484 + 0.1068 0.7472 + 0.1040 0.0022” | 0.0002”
Spectrum CFP4 0.7356 + 0.2291 0.7370 + 0.2033 0.9833 0.8176
CFP5 0.3364 + 0.1904 0.4011 + 0.1586 0.2171 0.3228
CFP6 0.6440 +0.1735 0.6133 + 0.1504 0.5243 0.6445
CFP7 0.4792 + 0.2453 0.3659 + 0.1968 0.0912 0.1040
Principal Component Analysis (PCA)

[32,33] is a multivariate statistical technique
where random observations are transformed into
a smaller set of uncorrelated variables termed
Principal Components (PCs). The term
component refers to a linear transformation that
selects a variable system for the data set such
that the greatest variance of the data lies on the
first axis; the first principal component, (PC1),
with the second greatest variance on the second
axis (PC2). These components are uncorrelated
since in sample space they are orthogonal (or
perpendicular) to each other.

We assess PCA when phenomena cannot be
directly observed. Especially, when the objective
is to identify and operate with underlying latent
factors rather than the observed data. They are
useful when there is an excess of observations
and dimensions with the need to reduce them to
a smaller number of factors. It is the most widely
applied statistical computation for
dimensionality reduction. The cumulative
influences are described as a percentage. If the
PCs account for the majority of influence in the
first few components we achieve a steep scree
plot.

Results

We have the values of CFP for seven groups
for 23 subjects who are diabetic; hence a grid of
7 by 23 to be assessed for each of the six power
spectra. From Tablel we observe that the
derivatives from the Welch and MTM power
spectrum respond in a very similar manner.
CFP1 and CFP3 are highly significant. CFP1 has
a p = 003 for the Kruskal-Wallis test of
significance for both power spectra and CFP3
has a p < 0.01 for the Kruskal-Wallis and
ANOVA1 tests of significance. In both
circumstances, the diabetic subjects have lower
mean values for the CFP1 and CFP3. This is to
be expected for dynamical diseases. The Welch
and MTM power spectra also respond similarly
with respect to the multivariate analytical
technique PCA.

For the Welch power spectra CFP1 has the
First Principal Component (PC1) (0.256) and the
Second Principal Component (PC2) (-0.520);
whereas, CFP3 has the PC1 (0.048) and the PC2
(-0.610). Only the first two components need be
considered due to the steep scree plot. The
cumulative influence as a percentage is 61.9%
for the PC1 and 99.8% for the cumulative total
of the PC1 and PC2. So, CFP1 which applies all
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three chaotic globals techniques is the best and
most robust overall combination with regard to
influencing the correct outcome.

For MTM power spectra CFP1 has the PC1
(0.257) and the PC2 Component (-0.518);
whereas, CFP3 has the PC1 (0.049) and the PC2
(-0.609). Only the first two components need be
considered due to the equally steep scree plot.
The cumulative influences are exactly the same
as with the Welch power spectra above. So,
CFP1 which applies all three chaotic globals
techniques is the preferred overall combination
with regard to influencing the correct outcome..

Regarding the Burg power spectrum CFP2,
CFP5 and CFP7 are highly significant at the
level of p <0.01 for the Kruskal-Wallis test. Yet,
in the case of CFP2 and CFP5 the diabetics
subjects mean values are greater than the normal
group which is unexpected and so can be
disregarded. CFP7 decreases for the diabetic
subjects with p < 0.01 for the Kruskal-Wallis
test. It is however insignificant for the ANOVAL
tests with a p-value of 0.1126. Also, it is a single
parameter based on spectral Entropy alone so is
not principally robust as would be the case with
CFP1. Thus, these results need not be considered
further.

Concerning the Covariance power spectrum
CFP2 is important at the level of p <0.01 for the
Kruskal-Wallis test of significance and p ~ 0.05
for ANOVAL. CFP4 is significant at the level of
p < 0.05 for the Kruskal-Wallis test of
significance, and CFP5 is significant at the level
of p < 0.01 for the Kruskal-Wallis test of
significance but for the ANOVAL the p-value is
less significant at 0.0156. Though, in all
significant cases the diabetics have mean values
which advocate that they have greater chaotic
response than the normal groups. This is not to
be expected since the dynamical diseases are
expected to correlate with a reduced chaotic
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response. Consequently, these results need not
considering further.

Regarding the Yule-Walker power spectrum
there are no combinations of chaotic global
parameters (CFP1 to CFP7) which are
significant. So, these results are not further
considered.

For the Periodogram power spectrum the
CFP1, CFP2 and CFP3 permutations of chaotic
global parameters are all significant. In all three
cases the diabetics have lower values for the
combination of chaotic global parameters which
is expected. CFP1 and CFP2 are significant at
the level of p < 0.05 for the Kruskal-Wallis test
of significance. CFP3 is significant at the level
of p < 0.01 for both ANOVAL and Kruskal-
Wallis tests of significance.

Regarding the Periodogram power spectra,
CFP1 has the PC1 (0.291) and the PC2 (-0.491);
whereas, CFP2 has the PC1 (-0.147) and the PC2
(-0.576) and, CFP3 has the PC1 (0.080) and the
PC2 (-0.600). Only the first two components
need be considered due to the steep scree plot.
The cumulative influence as a percentage is
61.0% for the PC1 and 98.7% for the cumulative
total of the PC1 and PC2. So, CFP1 which
applies all three chaotic globals techniques is the
best overall combination with regard to
influencing the correct outcome.

Discussions

We can recognize from the results above
that the most robust parameters throughout are
CFP1 and CFP3. This is the case for three of the
power spectra — Welch, MTM and Periodogram
all predicated on the Fast Fourier Transform, and
all are non-parametric methods. It is expected
that CFP1 would be the most statistically robust
parameter since it applies three parameters as an
alternative to two provided with CFP3. It is
noteworthy that the Welch and MTM power
spectra perform very similarly, as would be

233




expected. The Periodgram performed more
significantly on the statistical tests, but less
influential on the multivariate analysis. A
Periodogram spectrum can give consistent
results with higher noise levels than the other
two. It is the least sophisticated algorithm
applied here [12].

For the other three power spectra, all are
parametric methods — Burg, Covariance and
Yule-Walker and the results are largely
insignificant. The order of the power spectra has
little influence over the results. Yule-Walker
derivatives have no significant values by
parametric or non-parametric statistical tests;
therefore, we do not need to perform any
multivariate analysis. For the Burg power
spectrum the only valid result is CFP7 which is a
single entity and as such not robust and need not
be considered further. For Covariance power
spectrum in all significant cases the diabetics
have mean values which suggest that they have
greater chaotic response than the normal groups.
This is not to be expected since optimally
functioning physiological systems have higher
values for chaotic response. So, the Covariance
technique can be rejected.

Returning to MTM we call these derivatives
high spectral Entropy and high spectral
Detrended fluctuation analysis (hsDFA) and they
do slightly outperform those derived from the
Welch power spectrum. However, the MTM
power spectrum excels with regards to the
various parameters which define the spectrum.
For instance, the time bandwidth for the DPSS
can be adjusted and Thomson's ‘adaptive’
nonlinear combination method to combine
individual spectral estimates can be attuned to
the ‘eigenvalue’ or settings. This
flexiblity has the potential to increase the
significance of CFP1 and CFP3 derived from
MTM power spectra and could form the basis of
another study. It would also be statistically

‘unity’
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favourable to have larger datasets for both
normal and diabetic subjects. If the time-series
were longer this should enhance statistical
significances.

Conclusions

We have derived two robust and important
functions CFP1 and CFP3 which can compute
short time-series of HRV and deduce which
time-series is from a diabetic patient and which
from the normal subjects. We have also derived
two of the chaotic global parameters by six
different power spectra. On the basis of three
statistical tests we determine that the Welch and
MTM power spectra provide the most significant
results with Periodgram perfoming better on the
ANOVAL1 and Kruskal-Wallis tests, but slightly
less influential on the multivariate analysis.
Yule-Walker, Burg and Covariance power
spectra perform much worse when applied to the
two chaotic globals stated. Therefore we can
assume that the optimum parameters to apply are
those wholly derived from the MTM power
spectrum. They match those of the Welch power
spectrum but outperform it with the additional
flexiblity performed by DPSS and Thomson's
nonlinear combination methods. Therefore the
optimum parameter is the CFP1 a function of
high spectral Entropy, high spectral Detrended
Fluctuation Analysis (hsDFA) and spectra Multi-
Taper Method (SMTM).

By applying these algorithms to short
sections of RR-interval data it should be possible
to achieve a diagnosis and provide the necessary
treatment earlier.
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