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Abstract 

Background: The priniciple objective here is to analyze cardiovascular dynamics in 

diabetic subjects by actions related to heart rate variability (HRV). The correlation of 

chaotic globals is vital to evaluate the probability of dynamical diseases. Methods: Forty-

six adults were split equally. The autonomic evaluation consisted of recording HRV for 

30 minutes in supine position without any additional stimuli. “Chaotic globals” are then 

able to statistically determine which series of interbeat intervals are diabetic and which 

are not. Two of these chaotic globals, spectral Entropy and spectral Detrended 

fluctuation analysis were derived from six alternative power spectra: Welch, Multi-Taper 

Method, Covariance, Burg, Yule-Walker and the Periodogram. We then compared results 

to observe which power spectra provided the greatest significance by three statistical 

tests: One-way analysis of variance (ANOVA1); Kruskal-Wallis technique and the 

multivariate technique, principal component analysis (PCA). Results: The Chaotic 

Forward Parameter One (CFP1) applying all three parameters is proven the most robust 

algorithm with Welch and MTM spectra enforced. This was proven following two tests for 

normality where ANOVA1 (p=0.09) and Kruskal-Wallis (p=0.03). Multivariate analysis 

revealed that two principal components represented 99.8% of total variance, a steep 

scree plot, with CFP1 the most influential parameter. Conclusion: Diabetes reduced the 

chaotic response. 
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Background and Aims 

The beat of cardiac interbeat intervals has 

been revealed to oscillate in a complex and 

possibly chaotic manner [1]. It is the aim to 

optimally assess the pathological risk that levels 

of diabetes mellitus pose to the individual by 

analyzing the heart rate variability (HRV). To 

accomplish this we applied the Shannon Entropy 

[2] and Detrended fluctuation analysis (DFA) [3] 

algorithms to six different power spectra to 

determine which exhibited the most parametric 

sensitivity. Originally, Garner and Ling [4] 

undertook this to compute the spectral Entropy 

[5]  and spectral Detrended fluctuation analysis 

(sDFA) [4]. Yet, power spectra that we applied 
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here to derive these two parameters are: Welch 

[6], Multi-Taper Method (MTM) [7,8], 

Covariance [9], Burg [9], Yule-Walker [10] and 

the Periodogram [11,12].  

The advantage for producing the correlation 

with HRV is that it can provide a benchmark of 

the risk of the so-called “dynamical diseases 

[13]” in diabetic subjects. A potential reduction 

would be consistent with changes in the 

autonomic nervous system (ANS) and a 

dysfunctional vagus. The vagus has a vital role 

in regulating the rhythm of physiological 

systems. Sympathetic and parasympathetic 

nervous systems interactions have been 

documented as influencing HRV.  

HRV is a basic tool widely used to monitor 

the ANS. Alternative techniques include 

Photoplethysmography [14], Phonocardiography 

[15] and Vibrocardiography [16]. Some are 

unresponsive as with Sympathetic Skin 

Response [17] or too intricate and costly  as with 

Quantiative Pupillography [18]. 

‘Chaotic global’ techniques are more 

responsive to erraticism in dynamical systems 

than those based on time-domain, geometric 

methods, frequency domain and/or nonlinear 

measurements [19]. Chaotic behaviour in 

biological systems usually indicates normal 

physiological status; while a reduction of chaotic 

tendancies could be a pathophysiological marker 

[20].  

By implementing six alternative power 

spectra we aim to accomplish a result of greater 

significance by parametric and non-parametric 

statistics when equating normals with diabetics. 

It would then be conceivable to reach a diagnosis 

and provide the necessary treatment earlier.  

Material and Methods  

Patient Selection and Assessment was 

identical to the study by Souza et al. [21]. In 

brief, the study consisted of forty-six adults split 

equally. A cohort with diabetes mellitus (type 1); 

male (44%) and a control group of healthy 

subjects; male (65%). 

The subjects were selected for the absence 

of cardiac and respiratory diseases, non-

administration of medication(s) and were non-

smokers and non-alcoholics. Those subjects who 

satisfied the inclusion criteria progressed to an 

explanation of the objectives and procedures of 

the study and signed a confidential informed 

consent form. All of the procedures in this study 

were agreed by the Research Ethics Committee 

of the institution (Protocol No 47/2011). The 

experimental protocol consisted of the  

identification and autonomic evaluation. 

Throughout the identification, details were 

logged of the subjects past medical history to 

determine whether they satisfied the inclusion 

criteria and to characterize the population. The 

physical evaluation was undertaken by 

quantification of HRV. Appraisals were 

conducted in a noiseless laboratory with the 

temperature at about 23 C and humidity around 

54%. All assessments were performed between 

13:00hr and 17:00hr to circumvent circadian 

cycle influences. 

Data with regards to age, gender, signs and 

symptoms resulting from diabetes, the use of 

medications, smoking and alcoholic intake and 

the extent of physical activity judged by 

international physical activity questionnaires 

[22], were collected from the subjects. 

The HRV evaluations were undertaken to 

verify the autonomic modulation. The subjects 

were instructed to avoid alcoholic and/or ANS 

stimulants for 24 hours prior to data recording. 

Throughout the autonomic evaluation, the 

subjects were told to remain alert, silent, with 

spontaneous breathing at rest, in the supine 

position for 30 minutes on a sofa. After 

receiving an explanation of the data collection 

procedures, an electrode was located on the 
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subjects’ torso, and the heart rate receiver (Polar 

Electro, model S810i, Finland) was placed 

around the patients’ wrist. The equipment had 

been validated for collecting HRV data for 

analysis [23]. To analyze HRV indexes, 

precisely 1000 intervals of successive cardiac 

beats were recorded. They were chosen after 

digital filtering and perfected by manual filtering 

to eliminate artifact and ectopic beats. Only the 

series exceeding 95% of sinus beats were 

included. 

In the past, we have applied the Welch and 

MTM power spectra. It was assumed that since 

the MTM is an adaptive and nonlinear technique 

with less spectral leakage it would potentially be 

more sensitive to a chaotic response. In Souza et 

al [21] we applied the Welch power spectrum to 

subjects with diabetes. These then gave us the 

standard spectral Entropy and spectral Detrended 

fluctuation analysis (sDFA). Further studies on 

malnutrition [24], youth obesity [25] and a study 

on attention deficit hyperactivity disorder 

(ADHD) [26] applied the MTM power spectra 

throughout. These were referred to as high 

spectral Entropy and high spectral Detrended 

fluctuation analysis (hsDFA). During all studies 

we applied the MTM power spectrum to 

generate the third parameter spectral Multi-

Taper Method (sMTM) [4]. This quantifies the 

extent of broadband noise in the system 

associated with increasing chaotic response. This 

parameter remains unchanged throughout all the 

subsequent analysis. 

When we compute power spectra via 

Welch's method the parameters are set at: (i) 

sampling frequency of 2Hz, (ii) zero overlap, 

(iii) a Hamming window and the number of 

discrete Fourier transform (DFT) point to use in 

the power spectral density (PSD) estimate is the 

greater of 256 or the next power of two greater 

than the length of the segments, and (iv) there is 

no detrending. These were calculated in the 

study by Souza et al [21].  

To compute the MTM, the parameters are 

set as the following: (i) sampling frequency of 

1Hz; (ii) time bandwidth for the discrete prolate 

spheroidal sequences (DPSS) often referred to as 

slepian sequences [27] is 3; (iii) a discrete 

Fourier transform (DFT) length of 256; (iv) 

Thomson's adaptive nonlinear combination 

method to combine individual spectral estimates 

is applied. These were applied in studies on 

youth obesity [25], malnutrition [24] and ADHD 

[26]. 

 

The Periodogram power spectral density 

estimate is a nonparametric estimate of a wide-

sense stationary random process using a 

rectangular window. The number of points in the 

discrete Fourier transform (DFT) is a maximum 

of 256 or the next power of two greater than the 

signal length. 

For Covariance, Burg and Yule-Walker 

methods the order is of the autoregressive model 

(AR) used to produce the power spectra density 

estimate and is set to 4. A default discrete 

Fourier transform (DFT) length of 256 is 

applied. 

In this study, when computing spectral 

Entropy and sDFA we enforce six different 

power spectra (Welch, MTM, Covariance, Burg, 

Yule-Walker and Periodogram) to give six 

variants of these parameters. There are seven 

different permutations of three chaotic global 

parameters. All three chaotic global values have 

equal weighting of unity. The Chaotic Forward 

Parameter (CFP) enables different combinations 

of ‘chaotic globals’ to be applied to ensure 

optimum chaotic response - tested later by 

multivariate analysis. It is expected that the CFP 

which applies all three should be the most 

significant and robust since it takes the 

information and processes it in three different 
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ways. It is assumed that the CFP1 which is 

applied to the MTM power spectrum should be 

the best overall statistically. It is adaptive, 

nonlinear and intrinsically promotes reduced 

spectral leakage. 

 

Figure 1. The boxplots of the seven combinations of chaotic forward parameters (CFP 1 to 7) for the six power spectra 

density (PSD) estimates (Welch, MTM, Burg, Covariance, Yule-Walker and Periodogram) of 1000 RR intervals in normal 

subjects (CFPx N) and diabetic subjects (CFPx D). The point closest to the zero is the minimum and the point farthest 

away is the maximum. The point next closest to the zero is the 5
th

 percentile and the point next farthest away is the 95
th

 

percentile. The boundary of the box closest to zero indicates the 25
th

 percentile, a line within the box marks the median 

(not the mean), and the boundary of the box farthest from zero indicates the 75
th

 percentile. The difference between these 

points is the inter-quartile range (IQR). Whiskers (or error bars) above and below the box indicate the 90
th

 and 10
th

 

percentiles respectively. 
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Statistical Analyses 

Parametric statistics accept that the data are 

normally distributed, hence the use of the mean 

as a measure of central tendancy. If we cannot 

normalize the data we should not compare 

means. To verify normality we applied the 

Anderson-Darling [28] and Lilliefors [29] tests. 

The Anderson-Darling test for normality applies 

an empirical cumulative distribution function. 

The Lilliefors test is useful in studies such as 

these with small sample sizes. Here, the results 

were inconclusive so we cannot assert that the 

observations follow either a normal or non-

normal distribution. Therefore we applied both 

parametric and nonparametric tests of 

significance. These are the one-way analysis of 

variance (ANOVA1) [30] and the Kruskal-

Wallis [31] tests of significance, respectively. 

We illustrate the results as boxplots, in Figure 1 

and statistically in the Table 1. 

Table 1. Table of results for the mean and standard deviation of the chaotic responses CFP 1 to 7 derived by six different 

power spectra (Welch, MTM, Burg, Covariance, Yule-Walker & Periodogram) for those normal subjects (n=23) and 

those with diabetes mellitus (n=23). We also compute the significance (p-value) by parametric and nonparametric 

techniques: One way Analysis of Variance (ANOVA1) and Kruskal-Wallis tests of significance respectively. We mark 

those with significances p<0.05 with (*) and those with p<0.01 with (**). 

Power Spectra Applied Chaotic Forward 

Parameter 

Mean ± SD Normal 

(n=23) 

Mean ± SD Diabetic 

(n=23) 

ANOVA1 

(p-value) 

Kruskal-

Wallis 

(p-value) 

 

 

Welch Power Spectrum 

CFP1 0.9212 ± 0.1197 0.8590 ± 0.1202 0.0859 0.0288
*
 

CFP2 0.6332 ± 0.1365 0.5869 ± 0.0999 0.1962 0.1040 

CFP3 0.8465 ± 0.1074 0.7464 ± 0.1043 0.0025
**

 0.0002
**

 

CFP4 0.7279 ± 0.2251 0.7378 ± 0.1985 0.8746 0.8347 

CFP5 0.3255 ± 0.1734 0.4041 ± 0.1481 0.1057 0.0994 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 

CFP7 0.4760 ± 0.2451 0.3642 ± 0.1969 0.0954 0.1040 

 

Multi-Taper Method 

(MTM) 

Power Spectrum 

CFP1 0.9217 ± 0.1194 0.8603 ± 0.1202 0.0893 0.0273
*
 

CFP2 0.6340 ± 0.1362 0.5889 ± 0.0995 0.2066 0.1471 

CFP3 0.8467 ± 0.1072 0.7463 ± 0.1043 0.0024
**

 0.0002
**

 

CFP4 0.7283 ± 0.2248 0.7394 ± 0.1985 0.8597 0.8347 

CFP5 0.3268 ± 0.1725 0.4071 ± 0.1480 0.0973 0.1040 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 

CFP7 0.4765 ± 0.2248 0.3641 ± 0.1967 0.0931 0.1040 

 

 

Burg Power Spectrum 

CFP1 1.0317 ± 0.2653 1.1112 ± 0.2155 0.2706 0.4100 

CFP2 0.7823 ± 0.2821 0.9112 ± 0.2311 0.0971 0.0119
**

 

CFP3 0.7096 ± 0.1976 0.6373 ± 0.1999 0.2234 0.1381 

CFP4 0.9893 ± 0.2407 1.0946 ± 0.1895 0.1064 0.1064 

CFP5 0.7326 ± 0.2374 0.8915 ± 0.2044 0.0191
*
 0.0002

**
 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 

CFP7 0.1901 ± 0.2532 0.0801 ± 0.2049 0.1126 0.0023
**

 

 

 

Covariance Power 

Spectrum 

CFP1 1.0530 ± 0.2349 1.1490 ± 0.2052 0.1472 0.1017 

CFP2 0.8078 ± 0.2619 0.9555 ± 0.2282 0.0475
*
 0.0001

**
 

CFP3 0.6888 ± 0.1986 0.6392 ± 0.1986 0.4021 0.3283 

CFP4 1.0249 ± 0.2109 1.1316 ± 0.1811 0.0725 0.0243
*
 

CFP5 0.7755 ± 0. 2242 0.9349 ± 0.2048 0.0156
*
 <0.0001

**
 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 

CFP7 0.1402 ± 0.2263 0.0850 ± 0.2080 0.3937 0.1410 
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Table 1. Continued. 

Power Spectra Applied Chaotic Forward 

Parameter 

Mean ± SD Normal 

(n=23) 

Mean ± SD Diabetic 

(n=23) 

ANOVA1 

(p-value) 

Kruskal-

Wallis 

(p-value) 

 

 

Yule-Walker Power 

Spectrum 

CFP1 0.9307 ± 0.2448 0.8432 ± 0.2491 0.2360 0.1912 

CFP2 0.6453 ± 0.2581 0.5624 ± 0.2427 0.2681 0.1838 

CFP3 0.7570 ± 0.1791 0.6917 ± 0.1737 0.2161 0.1912 

CFP4 0.8430 ± 0.2347 0.7794 ± 0.2362 0.3643 0.4100 

CFP5 0.5257 ± 0.2135 0.4632 ± 0.2252 0.3397 0.2533 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 

CFP7 0.3113 ± 0.2572 0.2654 ± 0.2022 0.5047 0.6445 

 

 

Periodogram Power 

Spectrum 

CFP1 0.9298 ± 0.1205 0.8595 ± 0.1246 0.0581 0.0161
*
 

CFP2 0.6458 ± 0.1368 0.5878 ± 0.1042 0.1127 0.0265
*
 

CFP3 0.8484 ± 0.1068 0.7472 ± 0.1040 0.0022
**

 0.0002
**

 

CFP4 0.7356 ± 0.2291 0.7370 ± 0.2033 0.9833 0.8176 

CFP5 0.3364 ± 0.1904 0.4011 ± 0.1586 0.2171 0.3228 

CFP6 0.6440 ± 0.1735 0.6133 ± 0.1504 0.5243 0.6445 

CFP7 0.4792 ± 0.2453 0.3659 ± 0.1968 0.0912 0.1040 

 

Principal Component Analysis (PCA) 

[32,33] is a multivariate statistical technique 

where random observations are transformed into 

a smaller set of uncorrelated variables termed 

Principal Components (PCs). The term 

component refers to a linear transformation that 

selects a variable system for the data set such 

that the greatest variance of the data lies on the 

first axis; the first principal component, (PC1), 

with the second greatest variance on the second 

axis (PC2). These components are uncorrelated 

since in sample space they are orthogonal (or 

perpendicular) to each other. 

We assess PCA when phenomena cannot be 

directly observed. Especially, when the objective 

is to identify and operate with underlying latent 

factors rather than the observed data. They are 

useful when there is an excess of observations 

and dimensions with the need to reduce them to 

a smaller number of factors. It is the most widely 

applied statistical computation for 

dimensionality reduction. The cumulative 

influences are described as a percentage. If the 

PCs account for the majority of influence in the 

first few components we achieve a steep scree 

plot. 

Results  

We have the values of CFP for seven groups 

for 23 subjects who are diabetic; hence a grid of 

7 by 23 to be assessed for each of the six power 

spectra. From Table 1 we observe that the 

derivatives from the Welch and MTM power 

spectrum respond in a very similar manner. 

CFP1 and CFP3 are highly significant. CFP1 has 

a p ≈ 0.03 for the Kruskal-Wallis test of 

significance for both power spectra and CFP3 

has a p ≤ 0.01 for the Kruskal-Wallis and 

ANOVA1 tests of significance. In both 

circumstances, the diabetic subjects have lower 

mean values for the CFP1 and CFP3. This is to 

be expected for dynamical diseases. The Welch 

and MTM power spectra also respond similarly 

with respect to the multivariate analytical 

technique PCA.  

For the Welch power spectra CFP1 has the 

First Principal Component (PC1) (0.256) and the 

Second Principal Component (PC2) (-0.520); 

whereas, CFP3 has the PC1 (0.048) and the PC2 

(-0.610). Only the first two components need be 

considered due to the steep scree plot. The 

cumulative influence as a percentage is 61.9% 

for the PC1 and 99.8% for the cumulative total 

of the PC1 and PC2. So, CFP1 which applies all 
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three chaotic globals techniques is the best and 

most robust overall combination with regard to 

influencing the correct outcome.  

For MTM power spectra CFP1 has the PC1 

(0.257) and the PC2 Component (-0.518); 

whereas, CFP3 has the PC1 (0.049) and the PC2 

(-0.609). Only the first two components need be 

considered due to the equally steep scree plot. 

The cumulative influences are exactly the same 

as with the Welch power spectra above. So, 

CFP1 which applies all three chaotic globals 

techniques is the preferred overall combination 

with regard to influencing the correct outcome..  

Regarding the Burg power spectrum CFP2, 

CFP5 and CFP7 are highly significant at the 

level of p ≤ 0.01 for the Kruskal-Wallis test. Yet, 

in the case of CFP2 and CFP5 the diabetics 

subjects mean values are greater than the normal 

group which is unexpected and so can be 

disregarded. CFP7 decreases for the diabetic 

subjects with p ≤ 0.01 for the Kruskal-Wallis 

test. It is however insignificant for the ANOVA1 

tests with a p-value of 0.1126. Also, it is a single 

parameter based on spectral Entropy alone so is 

not principally robust as would be the case with 

CFP1. Thus, these results need not be considered 

further. 

Concerning the Covariance power spectrum 

CFP2 is important at the level of p ≤ 0.01 for the 

Kruskal-Wallis test of significance and p ≈ 0.05 

for ANOVA1. CFP4 is significant at the level of 

p ≤ 0.05 for the Kruskal-Wallis test of 

significance, and CFP5 is significant at the level 

of p ≤ 0.01 for the Kruskal-Wallis test of 

significance but for the ANOVA1 the p-value is 

less significant at 0.0156. Though, in all 

significant cases the diabetics have mean values 

which advocate that they have greater chaotic 

response than the normal groups. This is not to 

be expected since the dynamical diseases are 

expected to correlate with a reduced chaotic 

response. Consequently, these results need not 

considering further. 

Regarding the Yule-Walker power spectrum 

there are no combinations of chaotic global 

parameters (CFP1 to CFP7) which are 

significant. So, these results are not further 

considered. 

For the Periodogram power spectrum the 

CFP1, CFP2 and CFP3 permutations of chaotic 

global parameters are all significant. In all three 

cases the diabetics have lower values for the 

combination of chaotic global parameters which 

is expected. CFP1 and CFP2 are significant at 

the level of p ≤ 0.05 for the Kruskal-Wallis test 

of significance. CFP3 is significant at the level 

of p ≤ 0.01 for both ANOVA1 and Kruskal-

Wallis tests of significance. 

Regarding the Periodogram power spectra, 

CFP1 has the PC1 (0.291) and the PC2 (-0.491); 

whereas, CFP2 has the PC1 (-0.147) and the PC2 

(-0.576) and, CFP3 has the PC1 (0.080) and the 

PC2 (-0.600). Only the first two components 

need be considered due to the steep scree plot. 

The cumulative influence as a percentage is 

61.0% for the PC1 and 98.7% for the cumulative 

total of the PC1 and PC2. So, CFP1 which 

applies all three chaotic globals techniques is the 

best overall combination with regard to 

influencing the correct outcome.  

Discussions 

We can recognize from the results above 

that the most robust parameters throughout are 

CFP1 and CFP3. This is the case for three of the 

power spectra – Welch, MTM and Periodogram 

all predicated on the Fast Fourier Transform, and 

all are non-parametric methods. It is expected 

that CFP1 would be the most statistically robust 

parameter since it applies three parameters as an 

alternative to two provided with CFP3. It is 

noteworthy that the Welch and MTM power 

spectra perform very similarly, as would be 
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expected. The Periodgram performed more 

significantly on the statistical tests, but less 

influential on the multivariate analysis. A 

Periodogram spectrum can give consistent 

results with higher noise levels than the other 

two. It is the least sophisticated algorithm 

applied here [12]. 

For the other three power spectra, all are 

parametric methods – Burg, Covariance and 

Yule-Walker and the results are largely 

insignificant. The order of the power spectra has 

little influence over the results. Yule-Walker 

derivatives have no significant values by 

parametric or non-parametric statistical tests; 

therefore, we do not need to perform any 

multivariate analysis. For the Burg power 

spectrum the only valid result is CFP7 which is a 

single entity and as such not robust and need not 

be considered further. For Covariance power 

spectrum in all significant cases the diabetics 

have mean values which suggest that they have 

greater chaotic response than the normal groups. 

This is not to be expected since optimally 

functioning physiological systems have higher 

values for chaotic response. So, the Covariance 

technique can be rejected. 

Returning to MTM we call these derivatives 

high spectral Entropy and high spectral 

Detrended fluctuation analysis (hsDFA) and they 

do slightly outperform those derived from the 

Welch power spectrum. However, the MTM 

power spectrum excels with regards to the 

various parameters which define the spectrum. 

For instance, the time bandwidth for the DPSS 

can be adjusted and Thomson's ‘adaptive’ 

nonlinear combination method to combine 

individual spectral estimates can be attuned to 

the ‘eigenvalue’ or ‘unity’ settings. This 

flexiblity has the potential to increase the 

significance of CFP1 and CFP3 derived from 

MTM power spectra and could form the basis of 

another study. It would also be statistically 

favourable to have larger datasets for both 

normal and diabetic subjects. If the time-series 

were longer this should enhance statistical 

significances. 

Conclusions 

We have derived two robust and important 

functions CFP1 and CFP3 which can compute 

short time-series of HRV and deduce which 

time-series is from a diabetic patient and which 

from the normal subjects. We have also derived 

two of the chaotic global parameters by six 

different power spectra. On the basis of three 

statistical tests we determine that the Welch and 

MTM power spectra provide the most significant 

results with Periodgram perfoming better on the 

ANOVA1 and Kruskal-Wallis tests, but slightly 

less influential on the multivariate analysis. 

Yule-Walker, Burg and Covariance power 

spectra perform much worse when applied to the 

two chaotic globals stated. Therefore we can 

assume that the optimum parameters to apply are 

those wholly derived from the MTM power 

spectrum. They match those of the Welch power 

spectrum but outperform it with the additional 

flexiblity performed by DPSS and Thomson's 

nonlinear combination methods. Therefore the 

optimum parameter is the CFP1 a function of 

high spectral Entropy, high spectral Detrended 

Fluctuation Analysis (hsDFA) and spectra Multi-

Taper Method (sMTM). 

By applying these algorithms to short 

sections of RR-interval data it should be possible 

to achieve a diagnosis and provide the necessary 

treatment earlier.  
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